The RAS‐related GTPase RHOB confers resistance to EGFR‐tyrosine kinase inhibitors in non‐small‐cell lung cancer via an AKT‐dependent mechanism

نویسندگان

  • Olivier Calvayrac
  • Julien Mazières
  • Sarah Figarol
  • Claire Marty-Detraves
  • Isabelle Raymond-Letron
  • Emilie Bousquet
  • Magali Farella
  • Estelle Clermont-Taranchon
  • Julie Milia
  • Isabelle Rouquette
  • Nicolas Guibert
  • Amélie Lusque
  • Jacques Cadranel
  • Nathalie Mathiot
  • Ariel Savina
  • Anne Pradines
  • Gilles Favre
چکیده

Although lung cancer patients harboring EGFR mutations benefit from treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI), most of them rapidly relapse. RHOB GTPase is a critical player in both lung carcinogenesis and the EGFR signaling pathway; therefore, we hypothesized that it could play a role in the response to EGFR-TKI In a series of samples from EGFR-mutated patients, we found that low RHOB expression correlated with a good response to EGFR-TKI treatment while a poor response correlated with high RHOB expression (15.3 versus 5.6 months of progression-free survival). Moreover, a better response to EGFR-TKI was associated with low RHOB levels in a panel of lung tumor cell lines and in a lung-specific tetracycline-inducible EGFRL858R transgenic mouse model. High RHOB expression was also found to prevent erlotinib-induced AKT inhibition in vitro and in vivo Furthermore, a combination of the new-generation AKT inhibitor G594 with erlotinib induced tumor cell death in vitro and tumor regression in vivo in RHOB-positive cells. Our results support a role for RHOB/AKT signaling in the resistance to EGFR-TKI and propose RHOB as a potential predictor of patient response to EGFR-TKI treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer.

Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, w...

متن کامل

Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status

Resistance to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, often related to Ras or secondary EGFR mutations, is a relevant clinical issue in Non-Small Cell Lung Cancer (NSCLC). Although Src TK has been involved in such resistance, clinical development of its inhibitors has been so far limited. To better define the molecular targets of the Src TKIs saracatinib, dasatinib a...

متن کامل

Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance.

The epidermal growth factor receptor (EGFR) secondary kinase domain T790M non-small cell lung cancer (NSCLC) mutation enhances receptor catalytic activity and confers resistance to the reversible tyrosine kinase inhibitors gefitinib and erlotinib. Currently, irreversible inhibitors represent the primary approach in clinical use to circumvent resistance. We show that higher concentrations of the...

متن کامل

Preclinical Development Overcoming Erlotinib Resistance in EGFR Mutation–Positive Non–Small Cell Lung Cancer Cells by Targeting Survivin

Loss of PTEN was recently shown to contribute to resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in EGFR mutation–positive non–small cell lung cancer (NSCLC) through activation of the protein kinase AKT. We previously showed that downregulation of the expression of the antiapoptotic protein survivin by EGFR–TKIs contributes to EGFR–TKI-induced apoptosis in...

متن کامل

Mechanisms of resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors and therapeutic strategies in non-small cell lung cancer

Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017